NMN服用反馈1_打码.png
 
       最近,日本NMN临床实验的中期报告结果积极,首次临床证实了人体口服NMN后的效果,不老神药的首战告捷引发了极大的关注,站在NMN知识科普第一线,和或跃跃欲试或充满疑虑的吃瓜群众不同,小编已经开始担心自己永无退休之日啦。

 

 

       NMN真的是抗衰老的灵丹妙药吗?它究竟“神”在哪里?关于这些疑问,小编可以从主观感受和临床实验两方面分别和大家说说NMN的具体功效。

       我们先来看一看服用者的非临床反馈,距NMN产品开始在日本、美国和中国上市已有近两年,已经积累了数以万计的使用者。据服用者回馈,口服NMN后,有80%的服用者感受到身体功能明显好转,但因人而异,表现不同,包括:

 

 

注:服用反馈来源于网络,表中列举的每一项都有数例乃至数十例反馈,包含主观体验与体检报告,上述数据未经过系统和严格的统计处理

 

NMN能够改善那么多功能,似乎包治百病,这可能吗?

       其实在了解了NMN的作用机理后,对它拥有如此强大的功能就不会感到奇怪了:上一篇文中我们提到,衰老很大程度上是由人体内辅酶ⅠNAD+的缺少引起的,步入中老年后,NAD+水平急剧下降,引发各种各样的衰老症状,而NMN通过在体内迅速转化为NAD+,恢复了年轻时的水平,也恢复了正常的生理功能(调控人体数百项代谢反应、维持长寿蛋白功能、修复DNA、维持免疫系统正常功能等),从源头和根本上逆转了衰老。

       如果说以上只是服用者的自身感受,小编这里还整理了一些国外文献中的实验结果,无论是单次还是长期(长达12个月),口服还是注射NMN,对各种不同模型的动物均有积极作用(按时间顺序排列):

 

 

       这么多文献,这么多种功效,不知道大家有没有看花了眼?除了提高学习能力、改善记忆力、保护视力、减少辐射损伤、提高耐力等作用外,大家最关心的应该还是NMN在改善糖尿病、心血管和神经退行性疾病方面的潜力,这三大年龄相关疾病可以说是老年杀手,前两个就不必多说了,阿尔兹海默病和帕金森病应该是最令人害怕的老年疾病了,发病征兆弱、病理机制不明、药物治疗效果差,有多少人都不明不白地栽在了这种疾病上,而NMN在这方面的表现可以说是可圈可点了。这些实验动物的数据结果与人体服用NMN后的反馈也是相似的,能够互相印证。

       NMN在这些疾病中究竟是怎么发挥作用的?我们留到下篇为大家介绍吧。

参考文献:

[1]     Revollo, J.R., Korner, A., Mills, K.F., Satoh, A., Wang, T., Garten, A., Dasgupta, B., Sasaki, Y., Wolberger, C., Townsend, R.R., et al. (2007). Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 6, 363–375.

[2]     Yoshino, J., Mills, K.F., Yoon, M.J., and Imai, S. (2011). Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14, 528–536.

[3]     Caton, P.W., Kieswich, J., Yaqoob, M.M., Holness, M.J., and Sugden, M.C. (2011). Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function. Diabetologia 54, 3083–3092.

[4]     Gomes, A.P., Price, N.L., Ling, A.J., Moslehi, J.J., Montgomery, M.K., Rajman, L., White, J.P., Teodoro, J.S., Wrann, C.D., Hubbard, B.P., et al. (2013). Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624–1638.

[5]     Peek, C.B., Affinati, A.H., Ramsey, K.M., Kuo, H.Y., Yu, W., Sena, L.A., Ilkayeva, O., Marcheva, B., Kobayashi, Y., Omura, C., et al. (2013). Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 342, 1243417.

[6]     Karamanlidis, G., Lee, C.F., Garcia-Menendez, L., Kolwicz, S.C., Jr., Suthammarak, W., Gong, G., Sedensky, M.M., Morgan, P.G., Wang, W., and Tian, R.(2013). Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab. 18, 239–250.

[7]     Choi, S.E., Fu, T., Seok, S., Kim, D.H., Yu, E., Lee, K.W., Kang, Y., Li, X., Kemper, B., and Kemper, J.K. (2013). Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT. Aging Cell 12, 1062–1072.

[8]     Stein, L.R., and Imai, S. (2014). Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. EMBO J. 33, 1321–1340.

[9]     Yamamoto, T., Byun, J., Zhai, P., Ikeda, Y., Oka, S., and Sadoshima, J. (2014). Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One 9, e98972.

[10]  Long, A.N., Owens, K., Schlappal, A.E., Kristian, T., Fishman, P.S., and Schuh, R.A. (2015). Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model. BMC Neurol. 15, 19.

[11]  Yoon, M.J., Yoshida, M., Johnson, S., Takikawa, A., Usui, I., Tobe, K., Nakagawa, T., Yoshino, J., and Imai, S. (2015). SIRT1-mediated eNAMPT secretion from adipose tissue regulates hypothalamic NAD(+) and function in mice. Cell Metab. 21, 706–717.

[12]  Park, J.H., Long, A., Owens, K., and Kristian, T. (2016). Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia. Neurobiol. Dis. 95, 102–110.

[13]  de Picciotto, N.E., Gano, L.B., Johnson, L.C., Martens, C.R., Sindler, A.L., Mills, K.F., Imai, S., and Seals, D.R. (2016). Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell 15, 522–530.

[14]  Lin, J.B., Kubota, S., Ban, N., Yoshida, M., Santeford, A., Sene, A., Nakamura, R., Zapata, N., Kubota, M., Tsubota, K., et al. (2016). NAMPT-mediated NAD(+) biosynthesis is essential for vision in mice. Cell Rep. 17, 69–85.

[15]  Stromsdorfer, K.L., Yamaguchi, S., Yoon, M.J., Moseley, A.C., Franczyk, M.P., Kelly, S.C., Qi, N., Imai, S., and Yoshino, J. (2016). NAMPT-mediated NAD(+) biosynthesis in adipocytes regulates adipose tissue function and multi-organ insulin sensitivity in mice. Cell Rep. 16, 1851–1860.

[16]  Lee, C.F., Chavez, J.D., Garcia-Menendez, L., Choi, Y., Roe, N.D., Chiao, Y.A., Edgar, J.S., Goo, Y.A., Goodlett, D.R., Bruce, J.E., et al. (2016). Normalization of NAD+ redox balance as a therapy for heart failure. Circulation 134, 883–894.

[17]  Wang, X., Hu, X., Yang, Y., Takata, T., and Sakurai, T. (2016). Nicotinamide mononucleotide protects against beta-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res. 1643, 1–9.

[18]  Yao, Z., Yang, W., Gao, Z., and Jia, P. (2017). Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease. Neurosci. Lett. 647, 133–140.

[19]  Wei, C.C., Kong, Y.Y., Li, G.Q., Guan, Y.F., Wang, P., and Miao, C.Y. (2017a). Nicotinamide mononucleotide attenuates brain injury after intracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway. Sci. Rep. 7, 717.

[20]  Li, J., Bonkowski, M.S., Moniot, S., Zhang, D., Hubbard, B.P., Ling, A.J., Rajman, L.A., Qin, B., Lou, Z., Gorbunova, V., et al. (2017). A conserved NAD+ binding pocket that regulates protein-protein interactions during aging. Science 355, 1312–1317.

[21]  Wei, C.C., Kong, Y.Y., Xia, H., Li, G.Q., Zheng, S.L., Cheng, M.H., Wang, P., and Miao, C.Y. (2017b). NAD replenishment with nicotinamide mononucleotide protects blood-brain barrier integrity and attenuates delayed tPA-induced haemorrhagic transformation after cerebral ischemia. Br. J. Pharmacol. 174, 3823–3836.