《Cell》和《Nature》上的大量研究发现:NMN能有效延缓衰老引起的各种问题。哈佛医学院的研究发现NMN逆转了衰老,因此NMN又被称为长生不老药。事实上这种物质是人体固有的,一些水果和蔬菜也富含。
 
 
       NMN是烟酰胺单核苷酸Nicotinamide mononucleotide的简称,分子量334.2192,它是人体内固有的物质,也富含在一些水果和蔬菜中。在人体中NMN是NAD+的前体,其功能是通过NAD+体现。
 

NMN分子结构

 

NMN词典

中文名称:

beta-烟酰胺单核苷酸

中文别名:

β-烟酰胺单核苷酸; 烟酰胺核苷酸

英文名称:

beta-nicotinamide mononucleotide

英文别名:

3-carbamoyl-1-[5-O-(hydroxyphosphinato)-beta-D-ribofuranosyl]pyridinium;

3-(Aminocarbonyl)-1-(5-O-phosphonato-beta-D-ribofuranosyl)pyridinium;

3-(aminocarbonyl)-1-(5-O-phosphono-beta-D-ribofuranosyl)  ;

3-carbamoyl-1-(5-O-phosphonopentofuranosyl)pyridinium;  coenzyme NMN;

β-Nicotinamide mononucleotide; Nicotinamide mononucleotide;  NMN; inner salt; Pyridinium;

CAS号:

1094-61-7

EINECS号:

214-136-5

分子式:

C11H15N2O8P

分子量:

334.2192

InChI:

InChI=1/C11H15N2O8P/c12-10(16)6-2-1-3-13(4-6)11-9(15)8(14)7(21-11)5-20-22(17,18)19/h1-4,7-9,11,14-15H,5H2,(H3-,12,16,17,18,19)/t7-,8-,9-,11-/m1/s1

性质描述

其外观呈冷冻干燥粉末状,溶于水。

 

NMN是NAD+的前体

       NAD+又叫辅酶Ⅰ,全称烟酰胺腺嘌呤二核苷酸,又称二磷酸烟苷,存在每一个细胞中参与上千项反应。NAD+是三羧酸循环的重要辅酶,促进糖、脂肪、氨基酸的代谢,参与能量的合成;NAD+又是辅酶I消耗酶的唯一底物(DNA修复酶PARP的唯一底物、长寿蛋白Sirtuins的唯一底物、环ADP核糖合成酶CD38/157的唯一底物)。

 

 

NAD+对人体的主要影响

       三羧酸循环是人体三大营养(糖类、脂类、氨基酸)的最终代谢通路,也是糖类、脂类和氨基酸代谢联系的枢纽,三羧酸循环在体内提供了超过95%的能量,是生命体的能量枢纽。

 

三羧酸循环

 

富含NMN的食物

       NMN是人体内固有的物质(详见:NMN体内代谢途径),一些水果和蔬菜也富含,Cell杂志统计了一些常见食物的NMN含量。

 

食物中NMN含量

食物类型

名称

Mg/100g食物

蔬菜

毛豆

0.47–1.88

蔬菜

西兰花

0.25–1.12

蔬菜

黄瓜种子

0.56

黄瓜皮

0.65

蔬菜

卷心菜

0.0–0.90

水果

鳄梨

0.36–1.60

水果

番茄

0.26–0.30

菌类

蘑菇

0.0–1.01

牛肉(生)

0.06–0.42

海鲜

0.22

备注:NMN的测定采用高压液相,范围值取不同获取方式的最小平均值。

数据来源: Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice.Cell Metabolism, v.24, no.6, 2016 Dec 13, p.795(12)

 

       根据FDA的等效原则,一个70Kg的成年人每天应补充600mg的NMN,一个成年人补充同等量的NMN,则需要吃掉32~128kg的毛豆,或者54~240kg的西兰花。而且这还是在保证完全吸收的情况下,这显然是不现实的,补充非食物来源的NMN显得尤为重要。

 

NMN在人体内的代谢途径

       NAD+早在1904年发现并命名,其功能被持续发现,围绕NAD+的研究诞生了六位诺贝尔奖得主,所以NAD+有叫诺加因子。

 

NAD研究史.png

 

       NMN作为NAD+的前体,其功能也是通过NAD+来体现,NNM和NAD+的代谢是联系在一起的。NAD+在人体内的有三个独立的代谢途径:Preiss-Handler途径、从头合成途径和补救合成途径。(1

 

NAD+三个独立代谢途径

数据来源: NAD+ in aging, metabolism, and neurodegeneration

 

4.1,Preiss-Handler途径

       1957~1958年由Preiss及Hsndler发现,因此命名为Preiss-Handler途径。该途径从烟酸开始,经过烟酸磷酸核糖基转移酶(NAPRT)催化变成烟酸单核苷酸,经过NMNATI1~3酶的催化,变成烟酸腺嘌呤二核苷酸,然后再被催化成NAD+。

4.2,从头合成途径

       该途径又叫犬尿氨酸途径。从食物中摄取的色氨酸开始,依次经过N-甲酰犬尿氨酸、L-犬尿氨酸、5-羟基-2-氨基苯甲酸、ACMS后变成喹啉酸,然后喹啉酸进入Preiss-Handler途径。色氨酸转成N-甲酰犬尿氨酸的IDO和TDO途径是从头合成途径的限制性步骤,ACMS也可以进入三羧酸循环。

4.3,补救合成途径

       NAD+经过三个消耗途径(sirtuins,PARPs, and the cADPR )后变成烟酰胺,然后经过NAMPT催化后,变成NMN,NMN同样通过NMNAT1~3酶的催化转变成NAD+完成循环。有研究表明补救合成途径产生NAD+占人体NAD+总量的85%,补救合成途径中NAMPT酶是这个循环的限制步骤。NAD+的含量在这三个独立途径下保持平衡,补救合成途径是人体NAD+主要来源。NAD+会在一个75kg的成年人体内重复合成2~4次达到3g的水平。(2)

 

NAD+水平随着年龄降低

       NAD+对人体健康发挥着根本性的影响,但是随着年龄的增长NAD+在人体内的含量逐渐降低,线粒体和细胞核之间的交流受损,NAD+的减少也损害了细胞产生能量的能力,从而导致衰老和疾病,这也可能是我们变老的原因。(3

 

 

NAD+的降低带来一系列健康问题

       研究发现随着年龄的增长NAD+骤减的原因是随着年龄增长NAD+消耗路径中的CD38对NAD+的消耗成倍增加,也能导致NAD+在人体内的含量降低。(4

 

NAD+补充方式

6.1 NAD+补充方式比较

       从补充NAD+的角度来讲,可以补充NAD+三个代谢循环的四类前体烟酸、色氨酸、烟酰胺和NMN/NR。烟酸、烟酰胺和色氨酸在摄入量上都有一定的限制水平,烟酸(NA)和GPR109A的结合会导致患者严重的潮红,而过多的摄取色氨酸、烟酰胺也会存在副作用。(5)烟酰胺(NAM)会造成对Sirtuins的抑制从而引起肝脏中毒。(6

       烟酸通过Preiss-Handler途径变成NMN,而色氨酸通过从头合成途径变成NMN,烟酰胺和NMN/NR通过从补救合成途径变成NMN,而补救合成途径生成的NAD+占到体内NAD+来源的85%,显然作为补充合成途径的关键物质NMN/NR是补充体内NAD+的理想选择。由于NAMPT是补充合成路径的限速酶,补充烟酰胺(NAM)无法绕过NAMPT的瓶颈,NNM/NR是一个更有竞争力的选择。

 

补充物

途径

简介

富含食物

副作用

烟酸

Preiss-Handler途径

烟酰胺合成维生素PP,它是人体必需的13种维生素之一,是一种水溶性维生素,属于维生素B族,是维生素B3

广泛存在,尤其肝脏,奶类,蛋类,蔬菜,酵母,蘑菇,花茎甘蓝,全谷及一些水果

1.在肾功能正常时几乎不会发生毒性反应。一般不良反应有:感觉温热、皮肤发红、特别在脸面和颈部、头痛等血管扩张反应。2.大剂量用药可导致腹泻、头晕、乏力、皮肤干燥、瘙痒、眼干燥、恶心、呕吐、胃痛、高血糖、高尿酸、心律失常、肝毒性反应。3.一般服烟酸2周后,血管扩张及胃肠道不适可渐适应,逐渐增加用量可避免上述反应。如有严重皮肤潮红、瘙痒、胃肠道不适,应减少剂量。

色氨酸

从头合成途径

体内缺乏维生素B1、B2、B6的人,不能由色氨酸造出烟酸;在哺乳动物体内色氨酸和烟酸的转化比例为60:1

花豆、牛奶、肉类、鱼类、香蕉、花生及所有富含蛋白质的食物

成人每日摄取100~500mg

烟酰胺

补充合成途径

通常和烟酸合称为维生素PP,

动物肝脏与肾脏、瘦肉、鱼、卵、白色的家禽肉

本品肌内注射可引起剧痛,故不宜肌内注射。个别患者有头昏、恶心、上腹不适、食欲不振、皮肤潮红发热瘙痒,可自行消失。妊娠期过量服用有致畸可能,故禁用。

NMN/NR

补充合成途径

NAD+*直接的前体

西兰花、毛豆、鳄梨、牛油果、黄瓜

尚未发现不良反应

 

6.2 NR和NMN补充NAD+的方式比较

       与其他物质而言,NMN和NR是补充NAD+更直接的途径。NR进入人体内后需要NPK1~2磷酸化后变成NMN,而且线粒体内没有NPK1和NPK2的酶使NR转成NMN。(7)更为关键的是,NR口服后,大部分并不是转变成NMN,而是被消化成了NAM:

       “口服NR增加了NAM,而NMN保持不变。”(8

       “证据表明,在吸收发生前NR被转化成了NAM,这个反应是限制步骤。”(9)

       “在到达组织或被吸收之前,NR被转化成了NAM。”(10)

 

口服NR后血液中NR/NAM/NMN的变化

 

来源:Effects of a wide range of dietary nicotinamide riboside (NR) concentrations on metabolicflexibility and white adipose tissue (WAT) of mice fed a mildly obesogenic diet

 

       口服的NR在体内被消化成NAM,依然没能改变补救合成途径限速酶NAMPT的限制,补充NAD+的能力有限。综上所述,补充NMN是补充NAD+*直接,*有效的手段。

 

NMN是补充NMN*有效的方式

7.1,NMN是补充NAD+*直接的方式

       相较NAD+的其他补充方式,NMN绕过了NAMPT限速酶的瓶颈,可以迅速补充体内NAD+,在一个2017年的研究中补充NMN四天后,体内的NAD+和SIRT1的活性显著增加,服用NMN的老年老鼠的NAD+和SIRT1的活性水平高于没有服用NMN的年轻小鼠。(11)

 

 

7.2,NMN无任何副作用

       NMN本身就是人体内天然存在的物质,也存在于很多食物之中,纯天然无害。研究证实,补充NMN不会影响补充合成途径的各种酶的活性,口服NMN后对补充合成途径的各个酶NAMPT、PARP、NMNAT等活性都没有影响,是直接改变了NAD+在体内的水平。(12)

 

加入NR、NMN和对照组后补充合成相关酶的变化

来源:The NAD+ PrecursorNicotinamide Riboside Enhances Oxidative Metabolism and Protects againstHigh-Fat Diet-Induced Obesity

 

7.3,NMN可以被迅速吸收

       NMN在体内的吸收非常迅速,可以迅速提高体内NAD+水平:(13)

       A,通过消化系统完好无损地吸收;

       B,2~3分钟进入血液;

       C,15分钟内提升组织中的NMN含量;

       D,迅速提升血液、肝脏等器官中的NAD+水平;

 

口服NMN后NMN和NAD+浓度曲线

数据来源:Long-TermAdministration of Nicotinamide Mononucleotide Mitigates Age-AssociatedPhysiological Decline in Mice.Cell Metabolism, v.24, no.6, 2016 Dec 13,p.795(12)

 

NMN对健康的重要影响

8.1,物质和能量代谢

       NMN进入体内变成NAD+后对能量和物质代谢产生重要作用。仅就三羧酸循环而言,三羧酸循环是人体三大营养(糖类、脂类、氨基酸)的*终代谢通路,也是糖类、脂类和氨基酸代谢联系的枢纽,三羧酸循环同时为有机体提供了大量能量是有机体能量枢纽。线粒体内的辅酶I(NAD)在TCA循环中接受电子传递还原成还原型辅酶I(NADH),1 mol辅酶I(NAD)可以生成3 mol ATP,是细胞生命活动能量的重要来源。

 

 

8.2, 预防年龄相关的生理衰退

       许多研究已经证实,NAD+在人体内的含量降低随着年龄降低[14][15],补充NMN的小鼠表现出体重减少、能量增加、更好的血糖控制水平,NMN扭转了年龄造成的生理性衰退。而NAD+的消耗酶(PARP、cADPR和Sirtuins)在代谢,炎症,应激和损伤反应的生物过程中发挥重要作用,对调节细胞周期和抗衰老有重要作用。一般研究认为NMN抗衰老的机制是通过以下三个利用NAD+的酶来发挥作用。

 

8.2.1, DNA修复酶

       NAD+是ADP核糖基转移酶或核糖基聚合酶(PARP)的唯一底物,PARP位于多种细胞细胞核内,当自由基和氧化剂对细胞造成损伤时,DNA单链会发生断裂,PARP会被激活。激活的PARP利用辅酶I(NAD+)作为底物转移ADP核糖基到目标蛋白上,同时生成烟酰胺(Nam),这些目标蛋白参与DNA修复、基因表达、细胞周期进展、细胞存活、染色体重建和基因稳定性等多种功能。[16][17]有研究表明PARP对治疗癌症有积极作用,在各种癌症相关过程中发挥多功能作用,包括DNA修复,重组,细胞增殖或细胞死亡。[18]哈佛大学医院的Sinclari博士研究发现:补充NMN修复了辐射对小鼠DNA的损伤,使得它与健康小鼠无异。[19]

8.2.2, 环ADP核糖合成酶

       NAD+是环ADP核糖合成酶(cADPRsynthases)或环核糖聚合酶(cADP合酶)的唯一底物。环ADP核糖合成酶由一对细胞外酶组成,称为淋巴细胞抗原CD38和CD157,它们以NAD为底物生成环ADP核糖,是细胞周期和胰岛素的第二信使。[20]

8.2.3,去乙酰化酶

       NAD+是长寿Ⅲ蛋白型赖氨酸去乙酰化酶Sirtuins的唯一底物。Sirtuins存在于哺乳动物中,由275个氨基酸组成,有7种不同的亚型(SIRT1-SIRT7),SIRT3-SIRT5存在线粒体中,SITR6和SITR7存在于细胞核中,SITR1存在于细胞质中。Sirtuins在细胞抗逆性、能量代谢、细胞凋亡和衰老过程中具有重要作用,故被称为长寿蛋白。[21][22]SIRT1可激活PARP-1来进行DNA双链的高效修复,SIRT13~5可以作为肿瘤的抑制物。[23]

 

来源:Sirtuinsin mammals: insights into their biological function

 

8.3, 改善2型糖尿病

       2型糖尿病是现在社会的一种流行病,研究认为是高热量和久坐摧毁了我们身体对糖的天然代谢途径。一种机制认为高热量食物的摄取摧毁了NAD+的合成代谢,补充NMN可以增加胰岛素的敏感性,改善年龄诱导的葡萄糖耐受不良。[24]

8.4,预防神经退行性疾病(帕金森、老年痴呆症)

       现在研究普遍认为轴突变性是引发神经退行疾病(如帕金森病,阿尔茨海默病(AD)和肌萎缩侧索硬化)的原因。在神经元损伤之后诱导多个转录物,包括NRK2增加超过20倍,其催化合成NAD +,以补偿应答来提高NAD +水平。实验证明通过补充NAD+,提高了对创伤脑损伤[25]、帕金森[26]和肌萎缩侧索硬化症[27]的神经保护,是神经肌肉正常化延缓记忆衰退。[28]阿尔茨海默病表现出NAMPT减少和神经干细胞分化受损,极高NAMPT活性或补充NAD+后,减少了β-淀粉样蛋白含量的增加[2]9,通过PGC-1α介导的β-分泌酶(BACE1)降解和诱导线粒体生物合成来改善阿尔茨海默病。[30]

8.5, NMN功效概览

       Cell和Nature越来越多的文章对NMN的功能进行了揭示,将NMN的功能概览如下:

 

方向 相关文献 相关应用
抗衰老

NMN减轻了小鼠的生理性衰退,服用NMN扭转了小鼠的生理指标[31]

提高NAD+水平可使小鼠线粒体恢复至年轻水平,22月的小鼠服用NMN恢复至6月大小鼠水平[32]

NMN可激活长寿蛋白Sirtuins1~7[33][34]

改善睡眠、提高记忆力、抗衰老;延缓衰老
DNA修复 补充NMN可修复受辐射损伤细胞的DNA,服用一周后老年老鼠与年轻小鼠无差异[37]

a, 放化疗患者;

b,辐射人群

糖尿病 对饮食和年轻所引起的2型糖尿病能有效干预[35] 糖尿病患者
运动与减肥

NMN促进脂肪分解,增加运动耐力[36]

补充NAD+增加骨骼肌的形成和线粒体氧化代谢。[37]

运动员
神经认知

NMN可减低脑细胞死亡和氧化应激,这进一步证明了NMN对神经系统的保护作用[38]

NMN恢复了线粒体的功能[39]

NMN恢复了患有AD的老鼠的认知功能[40]

NMN修复了认知障碍[41]

老年痴呆、帕金森、肌萎缩侧索硬化
心血管

NMN显著增加了心脏NAD+的水平,保护心脏免受I/R损害;[42]

NMN减少了血管氧化应激,使老鼠主动脉恢复正常,代表了治疗动脉老化的新策略;[43]

NMN可降低心肌炎症;[44]

服用NMN后小鼠的FXN-KO恢复至正常水平。[45]

心血管慢性疾病
解酒护肝 NMN可促进酒精代谢,并增强人体对酒精的耐受性;[46] 解酒护肝
保护视力 NMN防止感光细胞变性并恢复视力,拯救视网膜障碍[47] 视力保护
保护听力 增加耳部神经元和组织中NAD +水平的方法可以提供对创伤引起的听力损失的保护[48] 听力保护

 

引用文献

1,NAD+ in aging, metabolism, and neurodegeneration

2,Loss of NAD Homeostasis Leads to Progressive and ReversibleDegeneration of Skeletal Muscle

3,Nicotinamide Mononucleotide, a Key NAD+ Intermediate,  Treats the Pathophysiology of  Diet- and Age-Induced Diabetes in Mice

4,CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism

5,Nicotinic acid, nicotinamide, and  nicotinamideriboside: amolecular evaluation of NAD+ precursor  vitamins in human nutrition.Bogan KL,Brenner C Annu Rev Nutr. 2008; 28():115-30.

6,Resistance Exercise Training Alters Mitochondrial Function in  HumanSkeletal Muscle

7,Pathways and subcellular compartmentation of NADbiosynthesis in human cells: from entry of  extracellular precursors tomitochondrial NAD generation.

8,Loss of NAD Homeostasis Leads to Progressive andReversible Degeneration of Skeletal Muscle  (Fredrick 2016)

9,Digestion andabsorption of NAD by the small intestine of the rat (Henderson, 1983)

10, Effects of a widerange of dietary nicotinamide riboside (NR) concentrations on metabolicflexibility and white adipose tissue (WAT) of mice fed a mildly obesogenic diet

 

11,Nicotinamide Mononucleotide, an NAD+ Precursor, Rescues Age-AssociatedSusceptibility to AKI in a Sirtuin 1-Dependent Manne

12‍,The NAD+ Precursor Nicotinamide Riboside Enhances OxidativeMetabolism and Protects against High-Fat Diet-Induced Obesity

13‍,Long-Term Administration of Nicotinamide Mononucleotide MitigatesAge-Associated Physiological Decline in Mice.Cell Metabolism, v.24, no.6, 2016Dec 13, p.795(12)

14,In vivo NAD assay reveals the intracellular NAD contents and redoxstate in healthy human brain  and their age dependences. Zhu, X.H., Lu, M., Lee,B.Y., Ugurbil, K., and Chen, W. Proc. Natl. Acad. Sci. USA. 2015; 112:2876–2881

15,Specific ablation of Nampt in adult neural stem cells recapitulatestheir functional defects during  aging. Stein, L.R. and Imai, S. EMBO J. 2014;33: 1321–134

16, Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes.Cantó, C., Sauve, A.A., and Bai, P. Mol. Aspects Med. 2013; 34: 1168–1201

17, New insights into the molecular and cellular functions ofpoly(ADP-ribose) and PARPs.

Gibson, B.A. andKraus, W.L. Nat. Rev. Mol. Cell Biol. 2012; 13: 411–424

18,Therapeutic applications of PARP inhibitors: anticancer therapy andbeyond. Curtin, N.J. and  Szabo, C. Mol. Aspects Med. 2013; 34: 1217–1256

19, A conserved NAD+ binding pocket that regulates protein-proteininteractions during aging

20, Evolution and function of the ADP ribosyl cyclase/CD38 gene familyin physiology and pathology.  Malavasi, F., Deaglio, S., Funaro, A., Ferrero,E., Horenstein, A.L., Ortolan, E., Vaisitti, T., and Aydin, S. Physiol. Rev.2008; 88: 841–886

21, Sirtuin 1-mediated effects of exercise and resveratrol onmitochondrial biogenesis. Menzies, K.J.,  Singh, K., Saleem, A., and Hood,D.A.J. Biol. Chem. 2013; 288: 6968–6979

22, SIRT1 metabolic actions: Integrating recent advances from mousemodels. Boutant, M. and  Canto, C. Mol. Metab. 2014; 3: 5–18

23, Mitochondrial sirtuins and their relationships with metabolicdisease and cancer.

Kumar, S. andLombard, D.B. Antioxid. Redox Signaling. 2015; 22: 1060–1077

24, Nicotinamide mononucleotide, a key NAD+ intermediate, treats thepathophysiology of diet-  and age-induced diabetes in mice

25, P7C3 neuroprotective chemicals block axonal degeneration andpreserve function after traumatic  brain injury. Yin, T.C., Britt, J.K., DeJesús Cortés, H., Lu, Y., Genova, R.M., Khan, M.Z., Voorhees,  J.R., Shao, J.,Katzman, A.C., Huntington, P.J. et al. Cell Rep. 2014; 8: 1731–1740

26, Neuroprotective efficacy of aminopropyl carbazoles in a mouse modelof Parkinson disease.  De Jesús-Cortés, H., Xu, P., Drawbridge, J., Estill, S.J.,Huntington, P., Tran, S., Britt, J., Tesla, R., Morlock, L., Naidoo, J. et al.Proc. Natl. Acad. Sci. USA. 2012; 109: 17010–17015

27, Neuroprotective efficacy of aminopropyl carbazoles in a mouse modelof amyotrophic lateral  sclerosis. Tesla, R., Wolf, H.P., Xu, P., Drawbridge,J., Estill, S.J., Huntington, P., McDaniel, L., Knobbe, W., Burket, A., Tran,S. et al. Proc. Natl. Acad. Sci. USA. 2012; 109: 17016–17021

28, NAD+ Replenishment Improves Lifespan and Healthspan in AtaxiaTelangiectasia Models via  Mitophagy and DNA Repair Substance with the potentialto postpone aging

29, Neuronal SIRT1 activation as a novel mechanism underlying theprevention of Alzheimer disease  amyloid neuropathology by calorie restriction.Qin, W., Yang, T., Ho, L., Zhao, Z., Wang, J., Chen, L., Zhao, W.,Thiyagarajan, M., MacGrogan, D., Rodgers, J.T. et al. J. Biol. Chem. 2006; 281:21745–21754

30,Nicotinamide riboside restores cognition through an upregulation ofproliferator activated receptor-γ coactivator 1α regulated β secretase 1degradation and mitochondrial  gene expression in Alzheimer’s mouse models.Gong, B., Pan, Y., Vempati, P., Zhao, W., Knable, L., Ho, L., Wang, J., Sastre,M., Ono, K., Sauve, A.A., and Pasinetti, G.M. Neurobiol. Aging. 2013; 34:1581–1588

31,NAD+ and sirtuins in aging and disease (Imai, 2014)

32,Declining NAD+ Induces a Pseudohypoxic State DisruptingNuclear-Mitochondrial Communication during Aging (Gomes, Sinclair,2013)

33, un Li,Zhenkun Lou, Vera Gorbunova, L. Aravind, Clemens Steegborn, David A. Sinclair.A conserved NAD+ binding pocket that regulates protein-protein interactions duringaging. Science 355:1312,(2017)

34,Mouchiroud L., Houtkooper R.H., Moullan N., et al.. TheNAD+/Sirtuin pathway modulates longevity through activation of mitochondrialUPR and FOXO signaling. Cell 154: 430-441 (2013)

35,Nicotinamide Mononucleotide, a Key NAD+ Intermediate, Treats thePathophysiology of Diet- and Age-Induced Diabetes in Mice (Yoshino, 2011

36,Head to Head Comparison of Short-Term Treatment with the NAD(+)Precursor Nicotinamide Mononucleotide (NMN) and 6 Weeks of Exercise in ObeseFemale Mice (Uddin, 2016)

37, Evidence for a direct effect of the NAD+ precursor acipimox onmuscle mitochondrial function in humans. van de Weijer, T., Phielix, E., Bilet,L., Williams, E.G., Ropelle, E.R., Bierwagen, A., Livingstone, R., Nowotny, P.,Sparks, L.M., Paglialunga, S. et al. Diabetes. 2015; 64: 1193–1201

38,Nicotinamide mononucleotide attenuates brain injury afterintracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway (Wei, 2017)

39,Nicotinamide mononucleotide protects against β-amyloidoligomer-induced cognitive impairment and neuronal death (Wang, 2016)

40,Nicotinamide mononucleotide inhibits JNK activation to reverseAlzheimer disease (Yao, 2017)

41,Nicotinamidemononucleotide, an intermediate of NAD+ synthesis, protects the heart fromischemia and repercussion (Yamamoto, 2014)

42,Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects theheart from ischemia and repercussion

43,Nicotinamide mononucleotide supplementation reverses vasculardysfunction and oxidative stress with aging in mice (de Picciotto, 2016)

44,Short-termadministration of Nicotinamide Mononucleotide preserves cardiac mitochondrialhomeostasis and prevents heart failure (Zhang, 2017)

45,Nicotinamide mononucleotide requires SIRT3 to improve cardiacfunction and bioenergetics in a Friedreich’s ataxia cardiomyopathy model

46,Samuel W.French. Chronic alcohol binging injures the liver andother organs by reducing NAD⁺ levels required for sirtuin's deacetylaseactivity. Experimental and Molecular Pathology 100:303-306(2016)

47,NAMPT-mediatedNAD+ biosynthesis is essential for vision in mice (lin, 2016)

48,Brown KD, Maqsood S, Huang JY, Pan Y, Harkcom W, Li W, Sauve A,Verdin E, Jaffrey SR. Activation of SIRT3 by the NAD(+) precursor nicotinamideriboside protects from noise-induced hearing loss. Cell metabolism.2014;20:1059–1068