本文经允许转自时光派微信公众号

 

编者按

 

 

在众多研究和商家的推动下,NAD+家族已经被神化成了“长生不老药”。而作为NAD+的直接前体,NMN是其中的佼佼者,2020年更是取得爆发式增长。距离NAD+同样一步之遥的NADH,带了“氢”,还原型NAD+的加持,效果似乎更胜一筹。一些商家甚至称,NADH直接转化NAD+强力延寿,效果上更是四倍于NMN。

 

真的如此么?

 

 

01

 

NAD+NADH:有联系,但区别更大

 

 

 

烟酰胺腺嘌呤二核苷酸(NAD+是生物体内许多脱氢酶(/氧化酶)的辅酶,有传递氢和电子的功能,在接收别的物质被氧化后脱下来的氢和电子之后,NAD+就变为了还原型烟酰胺腺嘌呤二核苷酸(NADH[1]

 

 

图示描述已自动生成

 

图注:NAD+的加氢和NADH的脱氢反应相互转化

 

 

NAD+NADH在细胞内各种基础生化反应中相互转化。但一般来说,细胞质内的NAD+/NADH比值约为60-700,线粒体内的NAD+/NADH比值保持在7-8[2,3]这种NAD+明显多于NADH的数量关系才能维持正常的线粒体膜电位,保证正常的线粒体功能和细胞能量代谢[4-6]

 

 

 

图注:NAD+/NADH参与糖代谢和生物氧化(@TRENDS in Endocrinology & Metabolism, 时光派编译)

 

 

NAD+/NADH的生物学作用,就同绿巨人浩克与变身前班纳一样,之间有联系,可区别也很大:至少,NAD+通过激活长寿蛋白Sirtuins来延缓衰老的功能,NADH就是没有的。

 

 

 

图注:NAD+NADH的生物学作用(WEIHAI YANG, et al.

 

 

其中还值得拿出来一讲的是NADH会引发还原性应激,很多人看到NADH名字里的还原型三个字,会想当然地把它认定为还原剂。但是研究已经证明了,过量的NADH会加速ROS生成,加重氧化[10,11]还原型反倒成了NADH的原罪。

 

 

图注:NAD+/NADH与氧化还原和衰老过程的关系(WEIHAI YANG, et al.

 

 

 

 

02

 

 NADH还可能让你的长寿药白吃

 

 

 

目前针对NAD+的研究已经证实了:随着年龄增长,某些组织内NAD+不断减少;很多人不知道的是,NADH在这个过程中也在不断增加,与老化相关[18]

 

 

 

图注:人类脑细胞中总NADNAD+NADH水平随年龄变化[18]

 

 

NAD+NADH之间还有着一种此消彼长的关系:一项研究让受试者补充NADH,在用药8周后测定血液单核细胞内NAD+NADH含量,结果发现细胞内NAD+水平下降,NADH水平上升NAD+/NADH比值下降[19]

 

 

 

图注:补充NADH 8周后血单核细胞内NAD+NADH水平和NAD+/NADH变化[19]

 

 

热量限制(CR目前公认最有效的续命方式,它就是通过调节Sir2降低NADH水平、升高NAD+/NADH比值来起到延寿的作用[20]

 

 

木桌子上的花瓶描述已自动生成

 

图注:NAD+/NADH ——“天平的两端

 

 

综上所述,我们认为:以目前的研究来看,外源性补充NADH会提升细胞内NADH水平,降低NAD+水平,可能不利于延长寿命。如果和NMNNR这类NAD+补充剂长寿药同服,最终的结果是花了双份钱却吃了个寂寞

 

NADH包装成长寿药的商人,其实更应该多吃吃自家产品——“救智、补脑

 

 

 

03

 

NADH真正的跑道:可能是神经万灵药,却并非聪明药

 

 

 

NADH真正跑起来,是学者们发现了NADH能间接地为酪氨酸羟化酶催化的多巴胺合成限速步骤提供还原当量,促进内源性左旋多巴(多巴胺前体物质)的合成[21];同时也有证据表明,NADH能够增加血浆左旋多巴的生物利用度[22]NADH还有着调节线粒体能量代谢、调节钙稳态、调节大脑基因表达、抗凋亡等多种作用,让它成为有望成为攀越神经系统疾病治疗这座高峰的种子选手

 

上世纪90年代以来,用NADH治疗各种神经系统疾病有效的研究报道一时间如雨后春笋般出现:

 

改善帕金森病(PD)[23,24]、阿尔茨海默症(AD,“老年痴呆”) [22]、 “时差病”[25]和慢性疲劳综合征(CFS)[26,27];甚至有望将其用于治疗亨廷顿舞蹈病(HD)、脑外伤后/脑梗死后脑损伤、多发性硬化症(MS)和脑瘤等“绝症” [28-36]

 

多巴胺与学习和记忆有着千丝万缕的联系[37,38],成就了今天NADH在保健品领域考生必备聪明药’”的地位,很多人试图服用它来集中注意力、提升工作学习效率。

 

日程表, 日历描述已自动生成

 

图注:某宝上的NADH“聪明药广告

 

 

但是,目前的研究只证实了服用NADH可能改善病理状态下(ADCFS和时差调整状态)患者的认知功能,在正常人身上的有效性和安全性的研究尚缺。因此,我们也不主张正常人拿到半截就开跑,将NADH作为提高记忆和学习能力的补剂来服用

 

 

 

 

时光派点评

 

 

对人体自身奥秘的探索过程,和那些试图解秘森罗万象的所有科学研究过程都一样——就像拼图游戏,是用碎片去构拟还原出一个全景,这个过程中难免会拼错那么一块两块,需要不断地去修正;我们现在所能看到的是现有拼图的模样,可能只是成品的冰山一角。

 

图片包含 游戏机, 人描述已自动生成

 

所以,我们只能告诉你,在结合现有研究证据分析之后,我们认为:NADH有潜力成为一款治疗许多神经系统疾病的好药,但未必利于延寿,不建议未患影响认知功能的疾病的正常人把NADH当作补剂去服用。希望NADH早日青春归位,不会再被用来骗人,回到属于自己的领域去发光发热!

 

每次与NAD+代谢流上的相关物质接触,笔者总能闻到一股难以名状的怪味儿NAD+利益相关者把NADH贬得一钱不值,NADHNAD+妖化成洪水猛兽,NAD+各类补充剂再明争暗斗……

我想,负责任的科普应该是罗列事实而臧否两论。我们不反对靠科普来变现,所以我们也开起了自己的小店;但是以捞钱为目的而扭曲事实去科普,说实话,真的有点臭。

 

原文阅读:https://mp.weixin.qq.com/s/6d5iL7KOubwVSBijUuQdeg

 

参考文献

 

[1] Mitchell P: Keilins respiratory chain concept and its chemiosmotic consequences. Science 1979; 206:1148.

 

[2] Veech, R.L. et al. (1972) The time-course of the effects of ethanol on the redox and phosphorylation states of rat liver. Biochem. J. 127, 387397.

 

[3] Williamson, D.H. et al. (1967) The redox state of free nicotinamide- adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103, 514527.

 

[4] Ying,W.(2008)NAD+/NADH and NADP+/NADPH incellular functions and cell death: regulation and biological consequences. Antioxid. Redox Signal. 10, 179206.

 

[5] Cheng, Z. et al. (2010) Insulin signaling meets mitochondria in metabolism. Trends Endocrinol. Metab. 21, 589598.

 

[6] Houtkooper,R.H.etal.(2010)The secret life of NAD+:an old metabolite controlling new metabolic signaling pathways. Endocr. Rev. 31, 194223.

 

[7] Kirsch M and De Groot H. NAD(P)H, a directly operating antioxidant? F ASEB J 15: 15691574, 2001.

 

[8] McGuinness ET and Butler JR. NAD+ kinase-a review. Int J Biochem 17: 111, 1985.

 

[9] Olek RA, Ziolkowski W, Kaczor JJ, Greci L, Popinigis J, and Antosiewicz J. Antioxidant activity of NADH and its analoguean in vitro study. J Biochem Mol Biol 37: 416421, 2004.

 

[10] Jaeschke H, Kleinwaechter C, and Wendel A. NADH-dependent reductive stress and ferritin-bound iron in allyl alcohol-induced lipid peroxidation in vivo: the protective effect of vitamin E. Chem Biol Interact 81: 5768, 1992.

 

[11] Zhang Z, Blake DR, Stevens CR, Kanczler JM, Winyard PG, Symons MC, Benboubetra M, and Harrison R. A reappraisal of xanthine dehydrogenase and oxidase in hypoxic reperfusion injury: the role of NADH as an electron donor. Free Radic Res 28: 151164, 1998.

 

[12] Kaplin AI, Snyder SH, and Linden DJ. Reduced nicotinamide adenine dinucleotide-selective stimulation of inositol 1,4,5-trisphosphate receptors mediates hypoxic mobilization of calcium. J Neurosci 16: 20022011, 1996.

 

[13] Zima AV, Copello JA, and Blatter LA. Differential modulation of cardiac and skeletal muscle ryanodine receptors by NADH. FEBS Lett 547: 3236, 2003.

 

[14] Zhang Q, Piston DW, and Goodman RH. Regulation of corepressor function by nuclear NADH. Science 295: 18951897, 2002.

 

[15] Rutter J, Reick M, Wu LC, and McKnight SL. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293: 510514, 2001.

 

[16] Nadlinger K, Birkmayer J, Gebauer F, and Kunze R. Influence of reduced nicotinamide adenine dinucleotide on the production of interleukin-6 by peripheral human blood leukocytes. Neuroim-munomodulation 9: 203208, 2001.

 

[17] Zhu K, Swanson RA, and Ying W. NADH can enter into astrocytes and block poly (ADP-ribose) polymerase-1-mediated astrocyte death. Neuroreport 16: 12091212, 2005.

 

[18] Zhu, X.-H., Lu, M., Lee, B.-Y., Ugurbil, K., & Chen, W. (2015). In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proceedings of the National Academy of Sciences, 112(9), 28762881.

 

[19] Castro-Marrero, J., Cordero, M. D., Segundo, M. J., Sáez-Francàs, N., Calvo, N., Román-Malo, L., Alegre, J. (2015). Does Oral Coenzyme Q10 Plus NADH Supplementation Improve Fatigue and Biochemical Parameters in Chronic Fatigue Syndrome? Antioxidants & Redox Signaling, 22(8), 679685.

 

[20] Lin, S. J., E. Ford, M. Haigis, G. Liszt & L. Guarente: Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev, 18, 12-6(2004).

 

[21] Swerdlow, R. H.: Is NADH effective in the treatment of Parkinson's disease? Drugs Aging, 13, 263-8(1998).

 

[22] Demarin V, Podobnik SS, Storga Tomic D, and Kay G. Treatment of Alzheimers disease with stabilized oral nicotinamide adenine dinucleotide: a randomized, double-blind study. Drugs Exp Clin Res 30: 2733, 2004.

 

[23] Kuhn W, Muller T, Winkel R, Danielczik S, Gerstner A, Hacker R, Mattern C, and Przuntek H. Parenteral application of NADH in Parkinsons disease: clinical improvement partially due to stimulation of endogenous levodopa biosynthesis. J Neural Transm 103: 11871193, 1996.

 

[24] Birkmayer, J. G., C. Vrecko, D. Volc & W. Birkmayer: Nicotinamide adenine dinucleotide (NADH)——a new therapeutic approach to Parkinson's disease. Comparison of oral and parenteral application. Acta Neurol Scand Suppl, 146, 32-5(1993).

 

[25] NASA: Stabilized NADH as a Countermeasure for Jet Lag. Report/Patent Number JSC-CN-6528.

 

[26] Forsyth, L. M., Preuss, H. G., MacDowell, A. L., Chiazze, L., Birkmayer, G. D., & Bellanti, J. A. (1999). Therapeutic effects of oral NADH on the symptoms of patients with chronic fatigue syndrome. Annals of Allergy, Asthma & Immunology, 82(2), 185191.

 

[27] Alegre, J., Rosés, J. M., Javierre, C., Ruiz-Baqués, A., Segundo, M. J., & Fernández de Sevilla, T. (2010). Nicotinamida adenina dinucleótido (NADH) en pacientes con síndrome de fatiga crónica. Revista Clínica Española, 210(6), 284288.

 

[28] Vis, J. C., E. Schipper, R. T. de Boer-van Huizen, M. M. Verbeek, R. M. de Waal, P. Wesseling, H. J. ten Donkelaar & B. Kremer: Expression pattern of apoptosis-related markers in Huntington's disease. Acta Neuropathol (Berl), 109, 321-8(2005).

 

[29] Virag, L. & C. Szabo: The therapeutic potential of poly (ADP-ribose) polymerase inhibitors. Pharmacol Rev, 54, 375-429(2002).

 

[30] Satchell, M. A., X. Zhang, P. M. Kochanek, C. E. Dixon, L. W. Jenkins, J. Melick, C. Szabo & R. S. Clark: A dual role for poly-ADP-ribosylation in spatial memory acquisition after traumatic brain injury in mice involving NAD+ depletion and ribosylation of 14-3-3gamma. J Neurochem, 85, 697-708(2003).

 

[31] LaPlaca, M. C., J. Zhang, R. Raghupathi, J. H. Li, F. Smith, F. M. Bareyre, S. H. Snyder, D. I. Graham & T. K. McIntosh: Pharmacologic inhibition of poly (ADP-ribose) polymerase is neuroprotective following traumatic brain injury in rats. J Neurotrauma, 18, 369-76(2001).

 

[32] Kofler, J., T. Otsuka, Z. Zhang, R. Noppens, M. R. Grafe, D. W. Koh, V. L. Dawson, J. M. de Murcia, P. D. Hurn & R. J. Traystman: Differential effect of PARP-2 deletion on brain injury after focal and global cerebral ischemia. J Cereb Blood Flow Metab, 26, 135-41(2006).

 

[33] Gilgun-Sherki, Y., E. Melamed & D. Offen: The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol, 251, 261-8(2004).

 

[34] Kauppinen, T. M., S. W. Suh, C. P. Genain & R. A. Swanson: Poly (ADP-ribose) polymerase-1 activation in a primate model of multiple sclerosis. J Neurosci Res, 81, 190-8(2005).

 

[35] Tentori, L., I. Portarena, F. Torino, M. Scerrati, P. Navarra & G. Graziani: Poly (ADP-ribose) polymerase inhibitor increases growth inhibition and reduces G(2)/M cell accumulation induced by temozolomide in malignant glioma cells. Glia, 40, 44-54(2002).

 

[36] Tentori, L., C. Leonetti, M. Scarsella, G. D'Amati, M. Vergati, I. Portarena, W. Xu, V. Kalish, G. Zupi, J. Zhang & G. Graziani: Systemic administration of GPI 15427, a novel poly(ADP-ribose) polymerase-1 inhibitor, increases the antitumor activity of temozolomide against intracranial melanoma, glioma, lymphoma. Clin Cancer Res, 9, 5370-9(2003).

 

[37] Liang, L., Wang, R., & Zhang, Z. (2012). The Effect of Dopamine on Working Memory. Neural Processing Letters, 35(3), 257263.

 

[38] Roffman, J. L., Tanner, A. S., Eryilmaz, H., Rodriguez-Thompson, A., Silverstein, N. J., Ho, N. F., Catana, C. (2016). Dopamine D1 signaling organizes network dynamics underlying working memory. Science Advances, 2(6), e1501672e1501672.